

Karaage programmer documentation

This is documentation for Karaage 3.

	Date

	Nov 23, 2020

	Version

	6.1

Contents:

	Karaage Architecture
	Karaage core

	Karaage Applications plugin

	Karaage Software plugin

	Karaage Usage plugin

	Setting up Development Environment

	Contributing Code
	Getting Started

	Testing Karaage
	Preparing system

	Automatically getting test data

	Testing Karaage in schroot

	Testing Karaage in Vagrant

	Creating new Karaage release
	Preparing system

	Make upstream release

	Make Debian release

	Plugins
	Settings

	Creating a plugin

	Templates

	URLS

	Glossary

Indices and tables

	Index

	Search Page

Karaage Architecture

This document describes the basic Karaage architecture.

Karaage core

The core Karaage defines the following db models in the
karaage.models module.

	
class karaage.models.LogEntry

	Represents a log entry for any action or comment left on an object.

	
class karaage.models.Institute

	Represents an institute for a person.

	
class karaage.models.InstituteDelegate

	Represents an institute delegate for an institute with extra
attributes.

	
class karaage.models.Machine

	Represents an individual machine or cluster in a machine
category.

	
class karaage.models.Account

	Represents an account for a particular person on a
particular machine category.

	
class karaage.models.Person

	Represents a person who may have one or more accounts. A person is global across all machine categories.

	
class karaage.models.Group

	Represents a group of people. A group is global
accross all machine categories.

	
class karaage.models.Project

	Represents a project for a set of machine categories. A project is considered global, although is only active on given
machine categories.

Karaage Applications plugin

Karaage Applications is a plugin that defines additional functionality
used for applications. It defines the following db models in the
karaage.plugins.kgapplications.models module.

	
class karaage.plugins.kgapplications.models.Application

	Abstract class that represents any application. Further classes should
inherit from this class.

	
class karaage.plugins.kgapplications.models.ProjectApplication

	Class that is derived from Application for project applications.

	
class karaage.plugins.kgapplications.models.Applicant

	An applicant for an application who doesn’t already have a
karaage.models.Person entry.

Karaage Software plugin

Karaage Software is a plugin that defines additional functionality
used for tracking software. It defines the following db models in the
karaage.plugins.kgsoftware.models module.

	
class karaage.plugins.kgsoftware.models.Software

	Represents a particular software package.

	
class karaage.plugins.kgsoftware.models.SoftwareCategory

	Represents a category of software, for easy searching.

	
class karaage.plugins.kgsoftware.models.SoftwareVersion

	Repesents a specific version of a software package.

	
class karaage.plugins.kgsoftware.models.SoftwareLicense

	Represents a license for a software package. A software package may have
zero or more licenses. If there are none, the user’ won’t be able to
add the software. There there are more then one, the latest is used by
default.

	
class karaage.plugins.kgsoftware.models.SoftwareLicenseAgreement

	Represents the fact a person agreed to a particular
SoftwareLicense at a particular point in time.

	
class karaage.plugins.kgsoftware.models.SoftwareApplication

	Class that is derived from karaage.plugins.kgapplications.models.Application for
applications to access restricted software.

Karaage Usage plugin

Karaage Usage is a plugin that defines additional functionality
used for tracking cluster usage. It may get rewritten in the future, and
you should not rely on anything remaining the same.

Setting up Development Environment

This section talks about setting up schroot, for releasing new Karaage
versions and for testing Karaage with Karaage-test.

It is assumed the system is running Debian Jessie; other build systems may be
possible, but will require variations.

These steps only need to be done once for a system.

	Ensure required packages installed:

apt-get install dput-ng dpkg-dev schroot sbuild slapd
apt-get install python-django python3-django
apt-get install python-tldap python3-tldap
apt-get install python-schroot python3-schroot

The above list is probably incomplete. Any omissions will cause
errors when running Karaage tests.

	Stop and disable slapd, it will prevent slapd running in a schroot:

service slapd stop
systemctl disable slapd

	Add yourself to the sbuild group. Replace brian with your unix user
id.

adduser brian sbuild

Logout and login again for this to work.

	Run the following commands:

cd tree
git clone https://github.com/brianmay/bampkgbuild.git
sudo ~/tree/bampkgbuild/create_schroot debian sid amd64
sudo ~/tree/bampkgbuild/create_schroot debian sid i386
sudo ~/tree/bampkgbuild/create_schroot debian jessie amd64
sudo ~/tree/bampkgbuild/create_schroot debian jessie i386

	Test schroot is in working order. Changes should disappear after exiting
the schroot.

schroot --chroot jessie-amd64
schroot --chroot jessie-amd64 --user root

	To make changes to the underlying chroot (you shouldn’t have to do this)
use:

schroot --chroot source:jessie-amd64

	If making releases you will need to have a GPG key to use to distribute
the changes and this should have an established web of trust. If not,
create a key and get other trusted people to sign it.

Contributing Code

github pull requests should be used.

Getting Started

	Checkout the latest version of Karaage:

git clone https://github.com/Karaage-Cluster/karaage.git
cd karaage

You can test that you’ve setup the commit-msg script correctly by doing a
commit and then looking at the log. You should see a “Change-Id: I[hex]”
line show up in your commit message text.

	Make changes, commit, and submit as github pull request.

	After the pull request is created, travis will run a complete set of tests
against the request to ensure it doesn’t break Karaage.

Testing Karaage

This section talks about the steps involved in creating a new official
release of Karaage.

It is assumed the system is running Debian Jessie; other build systems may be
possible, but will require variations.

Preparing system

	Follow the instructions under Setting up Development Environment.

	Install karaage-test.

cd tree/karaage
git clone https://github.com/Karaage-Cluster/karaage.git
git clone https://github.com/Karaage-Cluster/karaage-test.git
cd karaage-test

	Edit dotest.ini, update pathes to reflect true location.

Automatically getting test data

	Run a command like:

cd tree/karaage/karaage-test
./getdata -n vpac -s db1.vpac.org -l ldap1.vpac.org

This will create the following large files:

	data/vpac/complete.ldif

	data/vpac/complete.sql

	data/vpac/nousage.sql

	data/vpac/onlyusage.sql

The data directory can be a symlink if required.

	Create additional LDAP ldif files by hand. Samples below are for openldap.

	data/vpac/complete-config.ldif gets loaded first, so ensure that
the LDAP configuration is appropriate for this data.

dn: olcDatabase={1}mdb, cn=config
changetype: modify
replace: olcSuffix
olcSuffix: dc=vpac,dc=org
-
replace: olcRootDN
olcRootDN: cn=admin,dc=vpac,dc=org
-
replace: olcAccess
olcAccess: {0}to attrs=userPassword,shadowLastChange by anonymous auth by dn="cn=admin,dc=vpac,dc=org" write by * none
olcAccess: {1}to dn.base="" by * read
olcAccess: {2}to * by dn="cn=admin,dc=vpac,dc=org" write by * read
-

dn: cn=module,cn=config
changetype: add
objectClass: olcModuleList
cn: module
olcModulepath: /usr/lib/ldap
olcModuleload: ppolicy

dn: olcOverlay=ppolicy,olcDatabase={1}mdb,cn=config
changetype: add
objectClass: olcPPolicyConfig
olcPPolicyDefault: cn=default,ou=policies,dc=vpac,dc=org

	data/vpac/settings.py for telling Karaage the appropriate settings
to use to access the LDAP data. Make sure that _ldap_password is
correct.

_ldap_base = 'dc=vpac,dc=org'
_ldap_old_account_base = 'ou=people,%s' % _ldap_base
_ldap_old_group_base = 'ou=groups,%s' % _ldap_base

#_ldap_person_base = 'ou=people,%s' % _ldap_base
#_ldap_person_group_base = 'ou=people_groups,%s' % _ldap_base

_ldap_person_base = None
_ldap_person_group_base = None

_ldap_account_base = 'ou=people,%s' % _ldap_base
_ldap_account_group_base = 'ou=groups,%s' % _ldap_base

#_ldap_person_base = 'ou=people,%s' % _ldap_base
#_ldap_person_group_base = 'ou=people,%s' % _ldap_base
#_ldap_account_base = 'ou=accounts,%s' % _ldap_base
#_ldap_account_group_base = 'ou=accounts,%s' % _ldap_base

_ldap_user = 'cn=admin,%s' % _ldap_base
_ldap_password = 'XXXXX'

Testing Karaage in schroot

Examples for running tests in a schroot:

	Display help information:

./dotest --help

	Create Karaage from last release available at linuxpenguins.xyz, install with
empty data, and create super user.

./dotest --distribution jessie --architecture amd64 --shell --create_superuser

The --shell option means that we open up a shell instead of immediately
destroying the schroot when we finished.

	Same as above, but build packages from local git source.

./dotest --distribution jessie --architecture amd64 --shell --source=local

	Build test Karaage from copy of production data, and run full set of
migrations.

./dotest --distribution jessie --architecture amd64 -k
data/vpac/settings.py -L data/vpac/complete.ldif -S
data/vpac/nousage.sql --shell

Testing Karaage in Vagrant

Assumption: using virtualbox, and virtualbox already installed.

	Load vagrant Jessie image:

vagrant box add jessie https://github.com/holms/vagrant-jessie-box/releases/download/Jessie-v0.1/Debian-jessie-amd64-netboot.box

See http://www.vagrantbox.es/ for more available VMs.

	Change to vagrant directory:

cd vagrant

	Check the Vagrantfile and bootstrap.sh config files.

	Bring VM up:

vagrant up
vagrant ssh
sudo -s

	If you want to connect to VM without using vagrant’s port forwarding, you
may need to alter the HTTP_HOST setting in
/etc/karaage3/settings.py.

Creating new Karaage release

This section talks about the steps involved in creating a new official
release of Karaage.

It is assumed the system is running Debian Jessie; other build systems may be
possible, but will require variations.

Preparing system

These steps only need to be done once for a system.

Follow the instructions under Setting up Development Environment.

Make upstream release

This needs to happen first before building the Debian packages. You will need
to have write access to the github repository for Karaage and PyPI.

	Check all changes pushed to github and
[travis tests](https://travis-ci.org/Karaage-Cluster/karaage/builds) for
the appropriate branch pass.

	Check CHANGES.rst has entry for new release.

	Create a tag for the new release.

git tag --sign x.y.z

	Check version is correct.

./setup.py --version

	Push and upload.

python ./setup.py sdist upload -s -i 0xGPGKEY
git push
git push --tags

Make Debian release

This needs to happen after the upstream release. You will need to have write
access to the github repository for Karaage Debian and somewhere to upload the
changes to.

Warning

Current versions of Karaage use git-dpm for the git work flow. This is a
good solution and is the solution used by the Debian Python Modules team,
Unfortunately it is no longer actively developed and can be quirky at times.
As such it is difficult to document all the quirks here.

	Ensure schroot are up to date:

sudo ~/tree/bampkgbuild/update_schroot

	Ensure we are in the karaage-debian tree on the master branch.

cd tree/karaage/karaage-debian

	Ensure there are no git uncommited git changes or staged changes.

git status

	Ensure all branches are up to date.

git pull --ff-only --all

	Copy the new upstream source from the upstream repository.

cp ../karaage/dist/karaage-X.Y.Z.tar.gz ../karaage3_X.Y.Z.orig.tar.gz

	Merge the new upstream source.

git checkout master
git-dpm import-new-upstream --ptc --rebase-patched ../karaage3_X.Y.Z.orig.tar.gz

	It is possible conflicts may occur in the previous step, when it rebases
the Debian changes. If so, fix them and complete the rebase before
continuing.

	Sometimes git-dpm will leave you in the patches directory, you need to be
in the Master directory.

git-dpm update-patches

	Update debian/changelog command.

dch -v "X.Y.Z-1" "New upstream version."
git commit debian/changelog -m "Version X.Y.Z-1"
git push --all

	Check Debian package builds.

	Make changelog for release.

dch --release
git commit debian/changelog -m "Release version X.Y.Z"

	Build and upload package.

	When sure everything is ok, push changes to github:

git-dpm tag
git push origin
git push origin --tags

	Merge changes into karaage4 branch:

git checkout karaage4
git merge origin

	When sure everything is ok, push changes to github:

git push origin
git checkout master

Plugins

A plugin is a Django app with extra Karaage specific features. It can defined
extra settings, extra templates, extra URLS, and extra code.

For the purposes of this document, we assume the plugin is called kgplugin, and
defines a Django app with a python module called kgplugin. You should
change this name.

Settings

PLUGINS

Default: [] (Empty list)

A list of classes that define Karaage plugins.

Creating a plugin

A plugin needs to provide a urls.py file. This file can be empty if it doesn’t
provide any urls. It can optionally provide values for urlpatterns and
profile_urlpatterns.

A plugin needs to provide a plugin class that is derived from the
BasePlugin class. It is configured with the
PLUGINS setting.

	
class karaage.plugins.BasePlugin

	Base class used for defining Karaage specific settings used to define
plugins in Karaaage.

BasePlugin is derived from django.apps.AppConfig [https://docs.djangoproject.com/en/2.2/ref/applications/#django.apps.AppConfig] if Django
1.7 is detected.

Here is an example, taken from the legacy karaage-usage pugin:

from karaage.plugins import BasePlugin

 class plugin(BasePlugin):
 name = "karaage.plugins.kgusage"
 xmlrpc_methods = (
 ('karaage.plugins.kgusage.xmlrpc.parse_usage', 'parse_usage',),
)
 settings = {
 'GRAPH_DEBUG': False,
 'GRAPH_DIR': 'kgusage/',
 'GRAPH_TMP': 'kgusage/',
 }
 depends = ("karaage.plugins.kgsoftware.plugin",)

The name value is required, all other attributes are optional.

The following attributes can be set:

	
BasePlugin.name

	The python module for the Django app. This will be added to the
INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS] Django setting.

If Django 1.7 is detected, the plugin class is added to
INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS], not this value. This setting is used
by Django to locate the module.

	
BasePlugin.django_apps

	A typle list of extra Django apps that are required for this plugin to work
correctly. This will be added to the INSTALLED_APPS [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-INSTALLED_APPS]
setting.

	
BasePlugin.xmlrpc_methods

	A tuple list of extra methods to add to the XMLRPC_METHODS
setting.

	
BasePlugin.settings

	A dictionary of extra settings, and default values. These are added to the
Django settings. If the setting is already defined, the value given here is
ignored.

	
BasePlugin.depends

	A tuple list of plugins this plugin requires to be installed for it
to operate correctly.

Templates

The python module directory, can contain the templates directory. This
can have custom templates under the kgplugin directory. In addition,
Karaage will see the following extra files.

	kgplugin/index_top.html: contains HTML code to add to the top of the top
level Karaage page.

	kgplugin/index_bottom.html: contains HTML code to add to the bottom of
the top level Karaage page.

	kgplugin/main_admin.html: Links to add to the admin menu.

	kgplugin/main_profile.html: Links to add to the profile menu.

	kgplugin/misc.html: Links to add to the misc menu.

	emails/email_footer.txt: Footer to add to every outgoing email.

URLS

Extra URLS can be defined in the kgplugin.urls module, and should be called
urlpatterns or profile_urlpatterns for URLS that should appear under
the profile directory.

Glossary

	account
	A person may have one or more accounts. An account allows a person to
access machines on a given machine category.

	administrator
	A person who has unlimited access to Karaage.

	data store
	A list of external databases that we should link to and update
automatically. Supported databases include LDAP, MAM, and Slurm.

	global data store
	A data store for storing global data. The global datastores are
responsible for writing global data, such as people (not
accounts) to external databases such as LDAP.

	group
	A list of people. Usually maps directly to an LDAP
Group, but this depends on the data stores used.

	institute
	An entity that represents the organisation or group that every
person and project belongs to.

	institute delegate
	A person who manages an term:institute, and can allow new
project’s for the institute.

	machine
	A single cluster or computer which is managed as a distinct unit.

	machine category
	A group of machines that share the same authentication
systems.

	machine category data store
	A data store for storing machine category specific data
The machine category datastores are specific to a given machine machine,
and are responsible for writing machine category specific data, such as
accounts (not people) to external
databases such as LDAP.

	person
	A person who has access to the Karaage system. A person could have
one/more accounts, be an administrator, be a project leader, be an
institute delegate. These are optional.

	project
	A list of people who share a common goal.

	project leader
	A person who manages a project, and can allow new user’s to use
the project.

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 karaage	

 	
 	
 karaage.models	

 	
 	
 karaage.plugins	

 	
 	
 karaage.plugins.kgapplications.models	

 	
 	
 karaage.plugins.kgsoftware.models	

 	
 	
 karaage.urls	

Index

 A
 | B
 | D
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | S
 | X

A

 	
 	account

 	Account (class in karaage.models)

 	
 	administrator

 	Applicant (class in karaage.plugins.kgapplications.models)

 	Application (class in karaage.plugins.kgapplications.models)

B

 	
 	BasePlugin (class in karaage.plugins)

D

 	
 	data store

 	
 	depends (karaage.plugins.BasePlugin attribute)

 	django_apps (karaage.plugins.BasePlugin attribute)

G

 	
 	global data store

 	
 	group

 	Group (class in karaage.models)

I

 	
 	institute

 	Institute (class in karaage.models)

 	
 	institute delegate

 	InstituteDelegate (class in karaage.models)

K

 	
 	karaage.models (module)

 	karaage.plugins (module)

 	
 	karaage.plugins.kgapplications.models (module)

 	karaage.plugins.kgsoftware.models (module)

 	karaage.urls (module)

L

 	
 	LogEntry (class in karaage.models)

M

 	
 	machine

 	Machine (class in karaage.models)

 	
 	machine category

 	machine category data store

N

 	
 	name (karaage.plugins.BasePlugin attribute)

P

 	
 	person

 	Person (class in karaage.models)

 	
 PLUGINS

 	setting

 	
 	project

 	Project (class in karaage.models)

 	project leader

 	ProjectApplication (class in karaage.plugins.kgapplications.models)

S

 	
 	
 setting

 	PLUGINS

 	settings (karaage.plugins.BasePlugin attribute)

 	Software (class in karaage.plugins.kgsoftware.models)

 	
 	SoftwareApplication (class in karaage.plugins.kgsoftware.models)

 	SoftwareCategory (class in karaage.plugins.kgsoftware.models)

 	SoftwareLicense (class in karaage.plugins.kgsoftware.models)

 	SoftwareLicenseAgreement (class in karaage.plugins.kgsoftware.models)

 	SoftwareVersion (class in karaage.plugins.kgsoftware.models)

X

 	
 	xmlrpc_methods (karaage.plugins.BasePlugin attribute)

 nav.xhtml

 Table of Contents

 		
 Karaage programmer documentation

 		
 Karaage Architecture

 		
 Karaage core

 		
 Karaage Applications plugin

 		
 Karaage Software plugin

 		
 Karaage Usage plugin

 		
 Setting up Development Environment

 		
 Contributing Code

 		
 Getting Started

 		
 Testing Karaage

 		
 Preparing system

 		
 Automatically getting test data

 		
 Testing Karaage in schroot

 		
 Testing Karaage in Vagrant

 		
 Creating new Karaage release

 		
 Preparing system

 		
 Make upstream release

 		
 Make Debian release

 		
 Plugins

 		
 Settings

 		
 PLUGINS

 		
 Creating a plugin

 		
 Templates

 		
 URLS

 		
 Glossary

_static/file.png

_static/minus.png

_static/plus.png

